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Abstract. Satellite telemetry devices collect valuable information concerning the sites12

visited by animals, including the location of central places like dens, nests, rookeries, or13

haul-outs. Existing methods for estimating the location of central places from telemetry14

data require user-specified thresholds and ignore common nuances like measurement error.15

We present a fully model-based approach for locating central places from telemetry data16

that accounts for multiple sources of uncertainty and uses all of the available locational17

data. Our general framework consists of an observation model to account for large18

telemetry measurement error and animal movement, and a highly flexible mixture model19

specified using a Dirichlet process to identify the location of central places. We also20

quantify temporal patterns in central place use by incorporating ancillary behavioral data21

into the model; however, our framework is also suitable when no such behavioral data22

exist. We apply the model to a simulated data set as proof of concept. We then illustrate23
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our framework by analyzing an Argos satellite telemetry data set on harbor seals (Phoca24

vitulina) in the Gulf of Alaska, a species that exhibits fidelity to terrestrial haul-out sites.25

Key words: Harbor seal, Phoca vitulina, haul-out, Dirichlet process, mixture model,26

Bayesian analysis, hierarchical model, nonparametric, basis function, temporal dependence,27

integrated data model, data fusion.28

Introduction29

Many animal species return regularly to one or more central places like a den, nest, roost,30

or foraging site. Central places can be located by sighting individuals during aerial31

(Montgomery et al. 2007) or ground-based surveys (Blakesley et al. 1992), or by using32

radio-telemetry equipment to locate individuals in the field (Holloran and Anderson 2005);33

however, direct observation may only provide a snapshot of the animal’s behavior if surveys34

are infrequent (Ruprecht et al. 2012), and could be altogether impractical when surveys are35

encumbered by remote locations, rugged terrain, or otherwise difficult conditions. We36

address these issues using a model-based approach for locating central places from satellite37

telemetry data.38

Satellite telemetry devices collect regular sequences of animal locations (Tomkiewicz et39

al. 2010), data that contain valuable information concerning the sites visited over a40

monitoring period. Repeated use of a site often yields multiple telemetry locations41

collected at that site. Therefore, clusters of locations in mapped telemetry data are42

important indicators of a central place (Knopff et al. 2009).43

When deviations between true animal locations and the observed telemetry locations44

are small (i.e., small telemetry measurement error), clusters are well-defined. Accordingly,45

central places can be located by identifying clusters consisting of some pre-specified number46

of telemetry locations collected within a certain distance and time frame (Anderson and47

Lindzey 2003, Knopff et al. 2009). However, results are sensitive to the distance and time48
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thresholds used (Zimmermann et al. 2007). Moreover, distance thresholds fail when49

telemetry measurement error is large. Large errors lead to diffuse clusters, which, in turn,50

create uncertainty in the location of a central place as well as the composition of the51

clusters themselves. For example, observed telemetry locations can plausibly originate from52

more than one central place (i.e., cluster membership is ambiguous), or locations collected53

at a central place can be confused with locations collected during movements away from54

the site. Therefore, a method that accounts for telemetry measurement error is required.55

We present a model-based approach for estimating the location of central places from56

satellite telemetry data. Our approach incorporates an observation model that explicitly57

accounts for measurement error, and uses a mixture model as a device for exposing latent58

structure (i.e., clustering) in telemetry location data. The mixture model is specified using59

a flexible Dirichlet process prior, a well-developed Bayesian nonparametric model that60

adapts its complexity to the data at hand. We also quantify temporal patterns in central61

place use (i.e., factors affecting when a central place is used) by incorporating ancillary62

data related to animal behavior into the model; however, we also extend the model to63

situations when no such behavioral data exist. We first apply the model to a simulated64

data set as proof of concept. We then illustrate our framework using an Argos satellite65

telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska. Harbor seals are66

central place foragers that exhibit fidelity to terrestrial haul-out sites (Lowry et al. 2001).67

Telemetry Data68

The model we propose can be applied to various telemetry data types like VHF, GPS, or69

geolocation telemetry. We focus on Argos satellite telemetry data like those in our harbor70

seal data set that were calculated via the Argos least-squares positioning algorithm71

(Service Argos 2015). These data require special treatment because they exhibit an72

x-shaped error distribution that has greatest error variance along the NW-SE and NE-SW73
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axes, a consequence of the polar orbiting Argos satellites and error that is largest in the74

direction perpendicular to the orbit (Costa et al. 2010, Douglas et al. 2012). Furthermore,75

valid Argos telemetry locations are assigned one of six location classes (3, 2, 1, 0, A, and76

B), each of which exhibits different error patterns and magnitudes.77

In addition to positional data, modern telemetry devices often collect ancillary data78

related to animal behavior (Tomkiewicz et al. 2010) that can be helpful for partitioning79

when individuals are actively using a central place versus other resources. The harbor seals80

in our data set, for example, were equipped with satellite-linked depth recorders that81

gathered information pertaining to diving behavior. Specifically, we use information from82

an on-board conductivity sensor that differentiates when a tag is wet (low resistance) versus83

dry (high resistance) as a surrogate for central place use. Resistance values ranged from84

0-255, which we converted into a binary indicator for haul-out status using a threshold85

value of 127 (i.e., resistance values > 127 were categorized as hauled-out). The devices were86

programmed with a delay (10 consecutive readings at 45 sec. intervals) to prevent spurious87

wet/dry state transitions associated with splashing on a haul-out or short dry periods88

experienced by the sensor while a seal was surfaced but swimming; therefore, these wet/dry89

data reliably indicate when an individual is hauled-out on shore (dry) or at-sea (wet).90

Model Formulation91

Let s (t) ⌘ (sx (t) , sy (t))
0 represent the pair of coordinates for an observed telemetry92

location at time t 2 T , and µ (t) ⌘ (µx (t) , µy (t))
0 represent the coordinates for a93

corresponding latent central place. We denote the spatial support of central places as eS94

and the ancillary behavioral data as y (t). In the case of harbor seals, eS represents the95

coastline where haul-out sites can occur and y (t) 2 {0, 1}, where 0 indicates the individual96

is at-sea and 1 indicates the individual is on-shore using terrestrial resources.97

Observation model.—The observed telemetry locations arise from a process that reflects98
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animal movement and measurement error. Movement influences the true animal locations99

which are then observed imperfectly due to the telemetry measurement process. We100

accommodate various error patterns using a flexible mixture distribution, which itself is101

conditioned on the ancillary behavioral data to accommodate movement. First, consider a102

model for telemetry locations collected while the individual is at a central place (i.e.,103

y (t) = 1):104

s (t) ⇠

8
>>><
>>>:

N (µ (t) ,Σ), with prob. p (t)

N (µ (t) , eΣ), with prob. 1− p (t) .

(1)

In Eq. 1, an observed telemetry location (s (t)) arises from a mixture of multivariate105

normal distributions with mean µ (t) corresponding to the location of a central place, and106

variance-covariance matrices Σ or eΣ that describe telemetry measurement error. The107

matrix Σ is parameterized in a flexible manner (Brost et al. 2015, Buderman et al. 2016):108

Σ = σ2

2
64

1 ρ
p
a

ρ
p
a a

3
75 , (2)

where σ2 quantifies measurement error in the longitude direction, a modifies σ2 to describe109

error in the latitude direction, and ρ describes the correlation between errors in the two110

directions. The matrix eΣ equals Σ on the diagonal, but the off-diagonal elements are111

−ρ
p
a. This model specification accounts for circular (a = 1) and elliptical (a 6= 1) errors112

when ρ = 0, as well as x-shaped error patterns evident in Argos telemetry data when ρ 6= 0.113

We model telemetry locations collected while the individual is not at the central place114

(i.e., y (t) = 0) in a fashion similar to Eq. 1:115

s (t) ⇠

8
>>><
>>>:

N (µ (t) ,Σ+ σ2
µI), with prob. p (t)

N (µ (t) , eΣ+ σ2
µI), with prob. 1− p (t) ,

(3)

except the variance-covariance structure in Eq. 3 is augmented by σ2
µ, a parameter116

accounting for dispersion due to animal movement about the central place. In other words,117

5This	article	is	protected	by	copyright.	All	rights	reserved



A
ut

ho
r M

an
us

cr
ip

t
µ (t) and σ2

µ define the center and spread of an individual’s “homerange.” As in Eq. 1, Σ118

and eΣ account for error in the telemetry measurement process.119

The observation model in Eq. 3 represents an integrated likelihood (Berger et al.120

1999). Consider, for example, the hierarchical model121

s (t) ⇠ N
(
µ̃ (t) , σ2

I
)

(4)

µ̃ (t) ⇠ N
(
µ (t) , σ2

µI
)
, (5)

where µ̃ (t) is the true but unobserved animal location. The parameters µ (t), σ2, and σ2
µ122

are defined as in Eqs. 1-3, but note that the telemetry error structure in Eq. 4 is simplified123

for the purposes of illustration. In principle, we could estimate the true location µ̃ (t);124

however, our interest here is not the true locations but rather the location of the central125

place, µ (t). Therefore, we treat µ̃ (t) as a “nuisance” parameter and remove it from the126

likelihood by integration (i.e., Rao-Blackwellization; Berger et al. 1999):127

ˆ

µ̃(t)

N
(
s (t) | µ̃ (t) , σ2

I
)
N

(
µ̃ (t) | µ (t) , σ2

µI
)
dµ̃ (t) = N

(
s (t) | µ (t) , σ2

I+ σ2
µI
)
. (6)

Aside from the simplified error structure, the resulting marginal distribution is the same as128

Eq. 3 and has a reduced parameter space compared to Eqs. 4 and 5. It also yields a129

Markov chain Monte Carlo (MCMC) algorithm that is typically quicker to converge (Finley130

et al. 2015). Models for animal movement where individuals are attracted to a particular131

point are also available if inference concerning µ̃ (t) is desired (Blackwell 2003, McClintock132

et al. 2012); however, these methods require the number of central places used by an133

individual to be known.134

We define p (t) = 0.5 because the orbital plane of Argos satellites changes continuously135

and observations are equally likely to arise from either mixture component. The136

parameters related to measurement error (i.e., σ2, ρ, and a) are estimated for different137

Argos location quality classes (Appendix S1). Alternatively, Eq. 2 can be adapted to138

accommodate a continuous metric of location quality (e.g., GPS dilution of precision) or139
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the Argos satellite telemetry location error ellipse (McClintock et al. 2014).140

Spatial process model.—As specified in the observation model (Eqs. 1 and 3), a141

telemetry location arises from an unknown (but estimable) central place, µ (t). When142

considering multiple telemetry locations recorded over some period of time, the number of143

unique central places used by an individual is potentially > 1, but the exact number is144

unknown. Modeling central places is further complicated by possible multimodality145

(central places located in disjoint areas) and skewness (some central places are close146

together). We resolve these issues (i.e., multimodality, skewness, and an unknown number147

of central places) by using a Dirichlet process, a widely used probability model for148

unknown distributions that exhibits an important clustering property (Ferguson 1973,149

Hjort 2010). Following the constructive, stick-breaking representation of a Dirichlet process150

(Sethuraman 1994, Ishwaran and James 2001), we model µ (t) as a mixture of infinitely151

many components:152

µ (t) ⇠
1X

j=1

πjδµj
, (7)

where µj is the location of a potential central place, δµj
is a point mass (or “atom”) at µj,153

πj is the corresponding mixing proportion, and
P

1

j=1 πj = 1. Because Eq. 7 is a discrete154

distribution, draws from it are generally not distinct, thereby inducing replication in the155

values for µ (t). Thus, realizations from the Dirichlet process simultaneously provide a156

value for µ (t) and partition telemetry locations with the same value for µ (t) into clusters.157

The distinction between µj and µ (t) is subtle. The µj, for j = 1, . . . ,1, are unique and158

represent the location of potential central places. The µ (t), on the other hand, have a159

functional interpretation because they are time-specific and associate a µj to each telemetry160

location s (t). Greater replication of µ (t), for t 2 T , confers higher intensity use of the161

associated central place (i.e., more telemetry locations associated with the same central162

place). Note that, even though the Dirichlet process assumes infinitely many mixture163
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components (central places), only a finite number are used to generate the observed data.164

We formulate πj using a stick-breaking process (Sethuraman 1994):165

πj = ηj
Y

l<j

(1− ηl) , (8)

where ηj ⇠ Beta (1, θ) and θ is a concentration parameter that controls the prior expected166

number of mixture components in the Dirichlet process. To describe the stick-breaking167

process, begin with a stick of unit length that represents the total probability allocated to168

the infinitely many mixture components in Eq. 7. Initially, we break off a piece of length169

η1 ⇠ Beta (1, θ) from the stick and assign this probability (π1 = η1) to the first component,170

µ1. Next, we break off another proportion η2 ⇠ Beta (1, θ) from the remaining length of171

stick (1− η1) and assign this probability (π2 = η2 (1− η1)) to the second component, µ2.172

As the process is repeated, the stick gets shorter such that the lengths (i.e., mixing173

proportions) assigned to components with a higher index decrease stochastically. The174

concentration parameter (θ) controls the rate of decrease.175

In practice, we implement the Dirichlet process using a truncation approximation176

(Ishwaran and James 2001). For a sufficiently high index J , notice that
P

1

J+1 πj ⇡ 0177

because the mixing proportions decrease in the index j. Thus, an accurate approximation178

to the infinite Dirichlet process (Eq. 7) can be obtained by letting ηJ = 1, resulting in179

πj = 0 for j = J + 1, . . . ,1. The index J is an upper bound on the number of mixture180

components in Eq. 7, not the number of components necessary to model the observed data.181

Temporal process model.—We model the ancillary behavioral data using a binary probit182

regression formulated under a data augmentation approach (Albert and Chib 1993,183

Johnson et al. 2012, Dorazio and Rodriguez 2012). In particular, we introduce the184

parameter v (t) as a continuous, latent version of the binary process y (t), which we model185

as a normal random variable with unit variance:186

v (t) ⇠ N
(
x (t)0 β +w (t)0 α, 1

)
. (9)
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This expression represents a semiparametric regression with mean structure that includes187

parametric and nonparametric components (Hastie et al. 2009, Ruppert et al. 2003). The188

parametric component consists of a vector of time-varying covariates that affect the189

probability of central place use, x (t), and a corresponding vector of coefficients, β. The190

nonparametric component, w (t)0 α, is described below. Assuming y (t) = 1 if v (t) > 0 and191

y (t) = 0 if v (t)  0, the specification in Eq. 9 implies the probit regression model192

y (t) ⇠ Bernoulli
(
Φ
(
x (t)0 β +w (t)0 α

))
, (10)

where Φ is the standard normal cumulative distribution function. The auxiliary variable193

specification in Eqs. 9 and 10 streamlines computation because the associated194

full-conditional distributions are known and can be sampled in closed form when fitting the195

model using MCMC.196

We use the nonparametric component of Eq. 9 to account for temporal autocorrelation,197

which often occurs in data collected over time from a single individual (e.g., y (t)). The198

nonparametric component consists of a linear combination of basis functions evaluated at199

time t, w (t), and the vector of basis coefficients, α (Ruppert et al. 2003). The coefficients200

weight the basis functions to produce a smooth process through time, thereby inducing201

dependence among observations. The basis functions are arbitrary and should have202

features that match those of the underlying process being estimated. Commonly used basis203

functions include splines, wavelets, and Fourier series. The number of functions should also204

reflect the temporal resolution of that process (Ruppert et al. 2003).205

Prior distributions.—To complete the Bayesian formulation of this model, we specify206

prior distributions for unknown parameters. We assume β ⇠ N
(
µβ, σ

2
βI
)
,207

θ ⇠ Gamma (rθ, qθ), log (σµ) ⇠ N (µσ, σ
2
σ), and σ ⇠ Uniform(0, u), with similar uniform208

priors for ρ and a. The lognormal distribution for σµ allows prior information concerning209

animal movement and homerange size, if available, to be incorporated into the model. We210
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adopt a penalized approach to avoid overfitting α by assuming α ⇠ N (0, σ2

αI) and211

σ2
α ⇠ IG (rα, qα) (Ruppert et al. 2003). The prior for µj, referred to as the base212

distribution of the Dirichlet process (Hjort 2010), determines where the atoms δµj
tend to213

be located. We assume µj ⇠ f eS
(S), where S is a matrix containing all of the observed214

telemetry locations and f eS
(S) represents the density of telemetry locations in eS. We215

approximate f eS
(S) using a kernel density estimator evaluated over a rasterized domain eS.216

See Appendix S1 for the full model specification and Appendix S2 for details regarding217

model implementation.218

Model Application219

Simulated data example220

We demonstrate our modeling framework when parameters are known in a simulated data221

example. Figure 1 shows 1,000 locations simulated from the model using parameters222

obtained from an analysis of harbor seal telemetry data (see Case study below). To223

simplify presentation of results, simulated locations were randomly allocated to Argos224

location classes 3, 0, and B (high-, medium-, and low-accuracy locations). We set J = 50 in225

the truncation approximation to the Dirichlet process and modeled dependence in central226

place use with B-spline basis functions (w (t)). B-splines are commonly used in227

semiparametric regression because they have local support and stable numerical properties228

(Ruppert et al. 2003). We fit the model using a MCMC algorithm written in R (provided229

in Data S1; R Development Core Team 2015).230

Inference concerning µ (t), the spatial intensity of central place use, is summarized in231

Figure 1. Posterior probability is concentrated near known central places, and inference is232

more certain for central places associated with many telemetry locations (i.e., locations233

that were heavily used). Posterior probability for µj, the location of potential central234

places, is more diffuse than that of µ (t), but still generally concentrated near central235

10This	article	is	protected	by	copyright.	All	rights	reserved



A
ut

ho
r M

an
us

cr
ip

t
places (Appendix S3). The model recovers parameters related to telemetry measurement236

error, animal movement, and the temporal process of central place use (Appendix S3).237

Additional simulated data examples are presented in Appendix S4.238

Case study: Harbor seals239

To demonstrate our approach with real data, we apply our model to Argos satellite240

telemetry locations collected from a harbor seal near Kodiak Island, Alaska (Fig. 2).241

Harbor seals repeatedly use terrestrial haul-out sites along the coastline ( eS), which we242

represented using a 100-m resolution raster. Haul-out behavior changes over time due to243

physiological functions (thermoregulation, molting, pupping, etc.) and environmental244

conditions (e.g., tidal state) that affect the availability of haul-out sites (London et al.245

2012). Thus, we evaluated the affect of several temporal covariates on the use of haul-out246

sites: the number of hours since solar noon (13:00 hours), the number of hours since low247

tide, and the number of days since August 15 and its quadratic effect. Tide information248

was obtained from the nearest National Oceanic and Atmospheric Administration station249

(Kodiak Island, ID: 9457292). We set J = 50 in the truncation approximation to the250

Dirichlet process, which greatly exceeds the expected number of haul-out sites used by a251

single harbor seal. We modeled the temporal haul-out process using B-splines (w (t))252

defined at 6-hour intervals. In addition to allowing for smooth patterns in the probability253

of haul-out use, a basis expansion defined at this interval allows haul-out behavior to vary254

throughout day.255

Inference concerning the intensity of haul-out site use (µ (t)) is shown in Figure 2.256

Posterior probability is concentrated in three regions, generally occurring near clustered257

telemetry locations. The highest posterior probability occurs along the northernmost258

coastline of Ugak Bay, indicating this area was most actively used by the individual.259

Similar to the simulated data example, inference concerning µj was more diffuse, but260
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resembles that of µ (t) (Appendix S5). Parameters in the temporal process model (β)261

indicate haul-out use was highest at times near solar noon, during summer months, and at262

high tide (Appendix S5). Inference concerning animal movement (σµ) suggests263

approximately 95% of at-sea locations were within 6.6 km of a haul-out site. Parameters264

related to telemetry measurement error are provided in Appendix S5. All inference was265

based on 50,000 MCMC samples, which required 5 hours of processing time on a computer266

equipped with a 3.4 GHz Intel Core i7 processor.267

Discussion268

A fully model-based approach rigorously accommodates multiple sources of uncertainty269

when estimating the location of central places from satellite telemetry data. Our270

framework consists of three constituent models: an observation model that accounts for271

telemetry measurement error and animal movement, a spatial process model for estimating272

the location of central places, and a temporal process model for quantifying patterns in273

central place use. Unlike other approaches, our model does not require user-specified274

distance or time thresholds to identify central places (Anderson and Lindzey 2003), or prior275

knowledge regarding cluster characteristics (Webb et al. 2008). Model implementation is276

unified to properly account for uncertainty in parameter estimates.277

We demonstrate our model using simulated data examples and an application to278

harbor seals near Kodiak Island, Alaska. Harbor seals typically exhibit localized279

movements and regularly return to one or more terrestrial haul-outs between at-sea280

foraging bouts (Lowry et al. 2001). Our model could also be applied to species that display281

other behaviors. For example, our model could be used to examine the location of282

migratory stopover sites or kill sites (Higuchi et al. 2004, Zimmermann et al. 2007.283

Chevallier et al. 2010); however, the ability to model ephemeral locations requires284

telemetry data collected at a relatively high temporal frequency.285

12This	article	is	protected	by	copyright.	All	rights	reserved



A
ut

ho
r M

an
us

cr
ip

t
Observation model286

Our observation model consists of a flexible, finite mixture distribution (Eqs. 1 and 3) that287

accounts for potentially complex telemetry measurement errors like those evident in Argos288

data (Brost et al. 2015, Buderman et al. 2016). The observation model also accounts for289

movements away from the central place via an integrated likelihood (Eq. 3; Berger et al.290

1999). Because measurement error and animal movement are incorporated into the291

observation model, we use all telemetry locations to estimate the location of central places,292

not just those with small magnitude errors or those collected while the individual is at the293

central place. Furthermore, we use a constrained spatial support for central places (e.g.,294

haul-out sites that only occur along the coastline), and the subsequent discrepancy between295

the spatial supports of s (t) and µ (t), to simultaneously estimate telemetry measurement296

error (Brost et al. 2015). In applications where central places do not have a constrained297

support, telemetry error must be known a priori or estimated from a secondary data298

source (e.g., Jonsen et al. 2005, Costa et al. 2010, Douglas et al. 2012).299

Process models300

The spatial process model consists of a Dirichlet process, a Bayesian nonparametric model301

that adapts its complexity (e.g., the number of central places) to the observed data. In302

conjunction with the observation model, the spatial model comprises a Dirichlet process303

mixture model, a highly flexible framework that includes a large class of distributions304

(Hjort 2010). As such, the model accommodates multimodal and skewed distributions, like305

the distribution of central places.306

The Dirichlet process allows for potentially infinite clusters as T , the number of307

observations, approaches 1; however, the number of occupied components cannot exceed308

T and is generally much smaller than T . Consequently, a mixture of a finite number of309

components could be used in practice, which is the strategy we adopt by using a truncation310
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approximation to produce a computationally efficient algorithm for parameter estimation311

(Ishwaran and James 2001). Other representations of the Dirichlet process, like the312

Chinese restaurant process, do not rely on truncations for model fitting (Teh et al. 2006).313

Our spatial process model could be adapted to include temporal dynamics in the314

location of central places. For example, seasonal patterns in the location of harbor seal315

haul-out sites could be incorporated by modeling the central places in a Markovian fashion316

such that µ (t) is a function of previous central places. Adjusting our model to differentiate317

between behaviors would also be necessary if the goal is to examine multiple types of318

central places in a single dataset (i.e., long-term use of a den site and short-term use of kill319

sites). One approach to accommodating different behaviors is to formulate the Dirichlet320

process as a hidden Markov model, a commonly-used method for identifying multiple321

behavioral states in telemetry data (Patterson et al. 2009, Langrock et al. 2012).322

We use a semiparametric regression to model the temporal process of central place use323

and account for dependence in the behavioral data (Ruppert et al. 2003). Telemetry data324

are generally not equally spaced in time; thus, serial correlation would be difficult to model325

using, for example, an autoregressive process. The basis function approach that we326

implement is a flexible alternative to modeling autocorrelated data (Hefley et al. in327

revision).328

The basis functions, which are continuous in time, also facilitate prediction of animal329

behavior. For example, animal behavior can be predicted at times associated with330

telemetry locations when the positional and behavioral data are temporally misaligned331

(Appendix S6). Our model can even be adapted to estimate animal behavior when332

ancillary data are not available (Appendix S6). Indeed, prediction is a key advantage of a333

probabilistic framework like the one we present.334
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Guidance335

The joint analysis of multiple individuals can be achieved by applying our model to several336

individuals separately, and then combining inference across individuals to obtain337

population-level parameters with a meta-analysis (e.g., Hartung et al. 2008, Hooten et al.338

2016). Alternatively, multiple individuals could be analyzed concurrently using a339

hierarchical Dirichlet process (Teh et al. 2006, Hjort 2010). A hierarchical approach340

extends our model by placing individual-specific Dirichlet processes under a common prior341

(another Dirichlet process), thereby allowing central places to be unique to, or shared342

amongst, individuals. In either approach, heterogeneity among individuals can be343

accommodated and explained through the introduction of demographic covariates (e.g., sex344

and age), and the location of central places could be modeled as a function of345

environmental covariates to examine site selection.346

Bayesian nonparametric models, like the Dirichlet process we use to examine the347

location of central places, have been adapted to analyze time series data, grouped data,348

data in a tree, binary data, relational data, and spatial data (Gershman and Blei 2012).349

This highly flexible framework has been widely used in other fields (Rodriguez and Dunson350

2011), although we are aware of few examples from ecology. However, potential ecological351

applications are numerous and include abundance estimation (Dorazio et al. 2008, Johnson352

et al. 2013), population genetics (Huelsenbeck and Andolfatto 2007), and disease spread353

(Verity et al. 2014), among other applications where the goal is to infer latent structure354

based on empirical data (Morales et al. 2004, Brost and Beier 2012).355
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Figure 1. Simulation of 1,000 telemetry locations (s (t)) arising from three central478

places (µj). The point symbology associates telemetry locations (black and gray numerals;479

most are smaller gray numerals to reduce clutter) to their corresponding central places480

(white, numbered circles). For example, a telemetry location labeled “1” is associated with481

the central place labeled “1.” The spatial support of central places ( eS) exists at the482

intersection of the blue and gray polygons (black line). The posterior distribution of µ (t)483

(red gradient) in the vicinity of the central places is shown in the bottom panels; brighter484

red corresponds to higher posterior probability. Inference concerning the location of central485

place “3,” which was associated with 608 telemetry locations, is most certain. Inference486

concerning central places “1” and “2,” which were associated with fewer telemetry locations487

(approximately 200 locations each), is more diffuse. All inference was based on 20,000488

MCMC samples after convergence. Note that 326 simulated telemetry locations are beyond489

the extent of this map, occurring up to 880 km away.490

Figure 2. Telemetry locations (top panel) of a subadult female harbor seal monitored491

from 09 OCT 1995 to 04 JUN 1996 in Ugak Bay (57.42982°N, -152.5715°W) on the492

southern coast of Kodiak Island, Alaska, USA. Point symbology reflects whether the493

individual was hauled-out (black points) or at-sea (black crosses) at the time a telemetry494

location was recorded. Telemetry locations were collected on average every 5.7 h (range:495

0.0− 54.8 h) using an Argos satellite telemetry device. The animal’s position was measured496

on 1,004 occasions, with ⇡ 72% of locations coming from the three least accurate Argos497

location classes. Approximately 40% of locations were collected while the individual was at498

a haul-out site (y (t) = 1). The spatial support of haul-out sites ( eS) exists along the499

coastline (black line) at the intersection of the blue (water) and gray (land) polygons. The500

insets show three regions where the posterior probability of µ (t) (red gradient) is most501

concentrated (bottom panels). Brighter red corresponds to higher posterior probability. All502
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inference was based on 50,000 MCMC samples after convergence. Note that 190 telemetry503

locations are beyond the extent of this map, occurring up to 1,100 km away from Ugak Bay.504

22This	article	is	protected	by	copyright.	All	rights	reserved



A
ut

ho
r M

an
us

cr
ip

t 2

3

2

3

3

3

3

3

2

3

1

1

2

1

3

3 3
3

1

1
3

3

1

3

1

1

1
1

1

3

2

3
3

3

2

2
3

1
2

1

2

3

1

3

3

3

1

3

1

1

2
2

1

3

1

3

3

3

3

3

3

3

1

3

3

2

2

3

3

3

2

2
1

3

2

1

3

3

3

3

3

3

1

2

2

3

1

3

1

3

1

3

3

3

3 3

3

3

2

1

1

3

1

3

3

3
2

3

2

13

2

3

33

3

2

2

1

2

3

1

3

2

3

3

2

3

1

1

3

2

3

1

3

3

2

1

3

3
3

3

2
1

1

3

1

1

3

2

3

3

3

2

1

3

3

1

3

2

2 3

3

3

2

2

2

3

2

3

3

3

1

3

1

3

2

3

3

1

3

3

3

3

3
3

3 3

2 3

1

3

3

2

3

2

3

3

3

3

3

1

3

3
2

3

3

3

1

33

2

3

2

3

1

1

2

2

2

2

1

3

3

3
3

1

3

1

3

1

3

3

1

1

3

3

1

3

3

3

3

2

2

2

1

2

3

3 3

33

3

3

1

3

3

1

1

1
3

1 2

3

3

2 3

3

3

3

3

3

3

3

3

3

2

3

1

3

3

3

3

3

3

3

1

3

2

2

2

3

3

1

3

3

3
3

1

3

2

3

3

3

3

1
3

3

2

2

1

3

2

1

3

1

3

1

3

3

2

3

1
1

3
3

3

3

2

3

3

3

3

1

2

3

3
1 3

2

3

2

3

1

1

3

3

3

3

1

3

2

2

3

3

3

2

3

3

2

3

3

1

2

1

2

3

3

3

2

3

2

1

3

3

1

1

3

3

2

3
3

3

3

1

3

3

1 3

3

3

3

2

2

3
3

2

3

2

3

3

3

1

2

2

1

3

2

3

3

3

3

3

2

3

3

3

3

1

3

3

3

3

1

3

3

2

1

3

3

3

2

3

3

3

2

1

2

3

1

3

3

3
33

3

3

1

3
2

2

1

3

3

2

3

1

3

3
3

3

3

2

2

1

3

1

3

3

1

3

1

3

3

3

1

2

3 3

1

3

1

3

3

3

2

1

3

3

3

3

3

3

3

3

3

3

3

3

2

3

1

2

3

2

1

1

1

3

1

3

3

3

2

1

2

3

3
3

3

2
2

3

2

3

1

3

3

33

3

3

1 3

3

3

3

2

3

2

2

2

3

33

3

2

1 3

2

3

3

2

3

3

2

3

3

3

2

33

3 3

2

3

3

3

3

3

1

3

2

2

33

3
3

1

3

1

3

3

3

3

1

1

1

1

2

3

3

1
1 1

3
3

1

1

2

3
3

3

1
3

3

3

1

3

2

1

3

3

3

2
3

1

3

3

3

3

1

1

1

3

2

3

3

3

33
2

3

32

3

3

3

1

3
3 33

3

3

1

1

3

3

3

3

31

3

3

3

3

3

1

3

2

2

3

3

3

1

1

3

2

3

1

1
1

1

3

3

1

3

1

3

2

3 3

1

1

3

3

2

3

3

3

3

3

3

2

3

2

1

3
3

3

3

3

3
3

1

3

1

3

3
2

3

3

3 3

3

1

1

3

1

2

1

3

60 70 80 90

820

830

840

Easting (km)

N
or

th
in

g 
(k

m
)

2

1

1

1

1

1

2

1

1

1
2

2

2

1

1

1 1

1

1

1

1

1

2

1
2

1

1

1

1

1

1

1

1

1

1

1

2

2

11

1

1

1

1

1 1
1

1

1

1 2

1

1
1

1

2 1

2

1

2

1 2

2

2

2
1

2
1

2

2

1

2

2

1

2
1

2

1 2 2

2

1

2

2

1

1

2

1

1

2

2

2

2

2

21

1

2
2

3

3
3

3

3

3

3
3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3 3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3
3

3

3

3 3

3

33

3

3

3

3

3

3

33

3

3
3

3

3

3

3

3

3

3

3 3

3

3
3

3

3

3

33

3

3

3
33

3
3

3 3

3

3
3 3 3

3

3

3

3

Figure 1:

23This	article	is	protected	by	copyright.	All	rights	reserved



A
ut

ho
r M

an
us

cr
ip

t
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

ccccccccccccccccccccccccccccccccccccccccccccccccccc

60 70 80 90

820

830

840

Easting (km)

N
or

th
in

g 
(k

m
)

a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a) b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b) c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)

Figure 2:

24This	article	is	protected	by	copyright.	All	rights	reserved




